Transportation in Contemporary Society: A Complex Systems Approach [Via MIT World]



From the abstract: “In the nineteen fifties and sixties, students of transportation focused on building infrastructure and applied lessons from the physical sciences to designing mobility. Mobility was facilely linked to the engines of economic growth and expanding GDP. In time, that perspective was replaced by a focus on transportation systems and networks. There was a newfound emphasis on environmental impacts, land use, and intermodal freight. There was also a growing concern on unpriced externalities. Today, Joseph Sussman explains, with many of those problems still unsolved, transportation has entered a new phase– a period of immense complexity or CLIOS, which stands for complex, large scale, interconnected, open and sociotechical is an acronym that is becoming the mantra of transportation engineers. While it is not as far-reaching as “chaos” to a physicist, it is an approach with far-reaching consequences for the transportation field. To participate in “Complexity 101” engineers must take account of stochastic systems, difficulties relating cause and effect, and non-linear behaviors. They must also recognize complex feedback loops between macro and micro issues; time scale anomalies, and evaluative complexity brought by new stakeholders. Sussman observes, “Even if we could wish away behavioral complexity, it would not mean that we know what we should do.” He says that transportation engineering must now embrace management, the social sciences and planning and he warns us eschew narrow representations of complex systems because they are implicitly easier to solve.”
.

Complex Systems: A Survey

From the abstract: “A complex system is a system composed of many interacting parts, often called agents, which displays collective behavior that does not follow trivially from the behaviors of the individual parts. Examples include condensed matter systems, ecosystems, stock markets and economies, biological evolution, and indeed the whole of human society. Substantial progress has been made in the quantitative understanding of complex systems, particularly since the 1980s, using a combination of basic theory, much of it derived from physics, and computer simulation. The subject is a broad one, drawing on techniques and ideas from a wide range of areas. Here I give a short survey and an annotated bibliography of resources for those interested in learning about complex systems.” [By Mark E.J. Newman – Submitted to Amer. J. Physics]

Complex systems is a relatively young subject area and one that is evolving rapidly, but there are nonetheless a number of general references, including books and reviews, that bring together relevant topics in a useful way. ” The paper then has recommended materials on major topics relevant to the study of complex systems including:

  • Lattices and Networks
  • Dynamical Systems (including Chaos & Fractals)
  • Discrete Dynamics and Cellular Automata
  • Scaling and Criticality
  • Adaptation and Game Theory
  • Information Theory
  • Computational Complexity
  • Agent-Based Modeling

 

“Classic examples of complex systems include condensed matter systems, ecosystems, the economy and financial markets, the brain, the immune system, granular materials, road traffic, insect colonies, flocking or schooling behavior in birds or fish, the Internet, and even entire human societies.”

Modeling the Financial Crisis [ From Nature ]

This week’s issue of Nature offers two brief but meaningful articles on the financial crisis. Here are the abstracts:

Financial Systems: Ecology and Economics (By Neil Johnson & Thomas Lux): “In the run-up to the recent financial crisis, an increasingly elaborate set of financial instruments emerged, intended to optimize returns to individual institutions with seemingly minimal risk. Essentially no attention was given to their possible effects on the stability of the system as a whole. Drawing analogies with the dynamics of ecological food webs and with networks within which infectious diseases spread, we explore the interplay between complexity and stability in deliberately simplified models of financial networks. We suggest some policy lessons that can be drawn from such models, with the explicit aim of minimizing systemic risk.”

Systemic Risk in Banking Ecosystems (By Andrew G. Haldane & Robert M. May): “In the run-up to the recent financial crisis, an increasingly elaborate set of financial instruments emerged, intended to optimize returns to individual institutions with seemingly minimal risk. Essentially no attention was given to their possible effects on the stability of the system as a whole. Drawing analogies with the dynamics of ecological food webs and with networks within which infectious diseases spread, we explore the interplay between complexity and stability in deliberately simplified models of financial networks. We suggest some policy lessons that can be drawn from such models, with the explicit aim of minimizing systemic risk.”

 

Riders on a Swarm — Might Mimicking the Behavior of Ants, Bees & Birds Be the Key to Artificial Intelligence?

This week’s issue of the Economist has an interesting article entitled Riders on a Swarm. Among other things, the article discusses how attempts to computationally model ant, bee and bird behavior have offered insight into major problems in artificial intelligence.

For those not familiar, the examples discussed within the article are classic models in the science of complex systems. For example, here is the Netlogo implementation of bird flocking. It will run in your browser but requires Java 4.1 or higher. If you decide to take a look — please click setup – then go to make the model run. Once inside the Netlogo GUI, you can explore how various parameter configurations impact the model’s outcomes.

One of the major insights of the bird flocking model is how random starting conditions and local behavioral rules can lead to the emergence of observed behavioral patterns that appear (at least on first glance) to be orchestrated by some sort of top down command structure.

This is, of course, not the case. The model is bottom up and not top down. Both the simplicity and the bottom up flavor of the model are apparent when you explore the model’s code. For those interested, I will take a second and plug the slides from my ICPSR class. In the class, I dedicated about an hour of class time to bird flocking model. Click here for the slides. In the slides, I walk through some of the important features of the code (discussion starts on slide 16).

Scott Page on Leveraging Diversity

Diversity is one the major topics of interest here at Michigan Center for the Study of Complex Systems.  This includes diversity as experienced in physical as well as in social systems. On this topic, here is a lecture that one of my dissertation advisors, Scott Page gave earlier this year at the Darden School of Business at Virginia. This lecture is related to his book about the power of diversity entitled: The Difference: How The Power of Diversity Creates Better Groups, Firms, Schools, and Societies.  Although I realize it is roughly a 90 minute talk, I believe that you will find that it is well worth the time!


ICPSR 2010 Summer Program — Introduction to Computing for the Study of Complex Systems

This summer I will be teaching a summer course entitled Introduction to Computing for the Study of Complex Systems at the ICPSR Summer Program in Quantitative Methods.  For those not familiar, ICSPR has been offering summer classes in methods since 1963. The Summer Program current features dozens of courses including basic and advanced econometrics, bayesian statistics, game theory, complex systems, network analysis, quantitative analysis of crime, etc.

The Complex Systems Computing Module runs together with the Complex Systems lectures offered by Ken Kollman (Michigan), Scott E. Page (Michigan), P.J. Lamberson (MIT-Sloan) and Kate Anderson (Carnegie Mellon).  Here is the syllabus for the lecture.

The first computing session is tonight from 6-8pm at the ICPSR Computer Lab.  If you click here or click on the image above you will be taken to a dedicated page that will host the syllabus and course slides!  Note: The slides and assignments will not be posted until the conclusion of each class.